BOPEF Film

A New Sustainable Solution for Flexible Food Packaging

Marcos Vieira Oben BOPET Manager

Agenda

Avantium

- Avantium Introduction
- PEF (PolyEthylene Furanoate) Resin Overview

Terphane

- Terphane Introduction
- PEF Film Overview
- Conversion Process (Printing, lamination, metallization).

Conclusions

Next Steps

Avantium at a glance: a pioneer in renewable chemistry

PEF Resin Overview

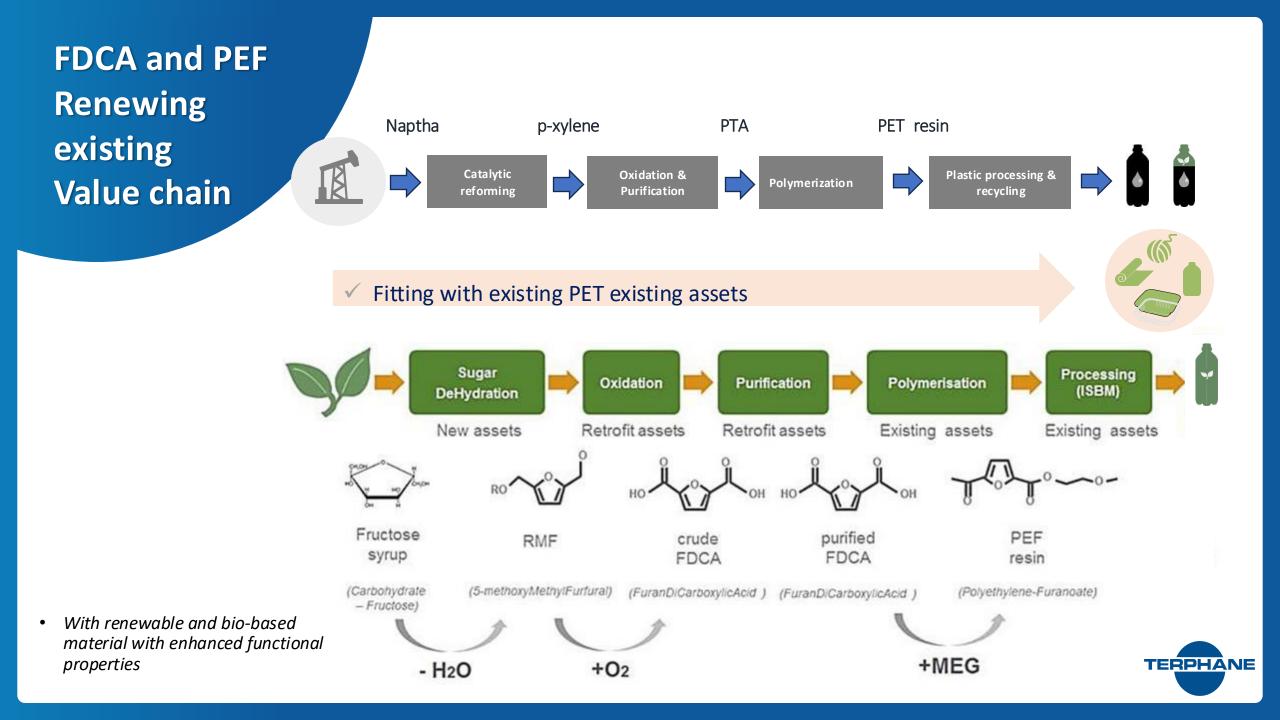
FDCA Pilot Plant (since 2011)

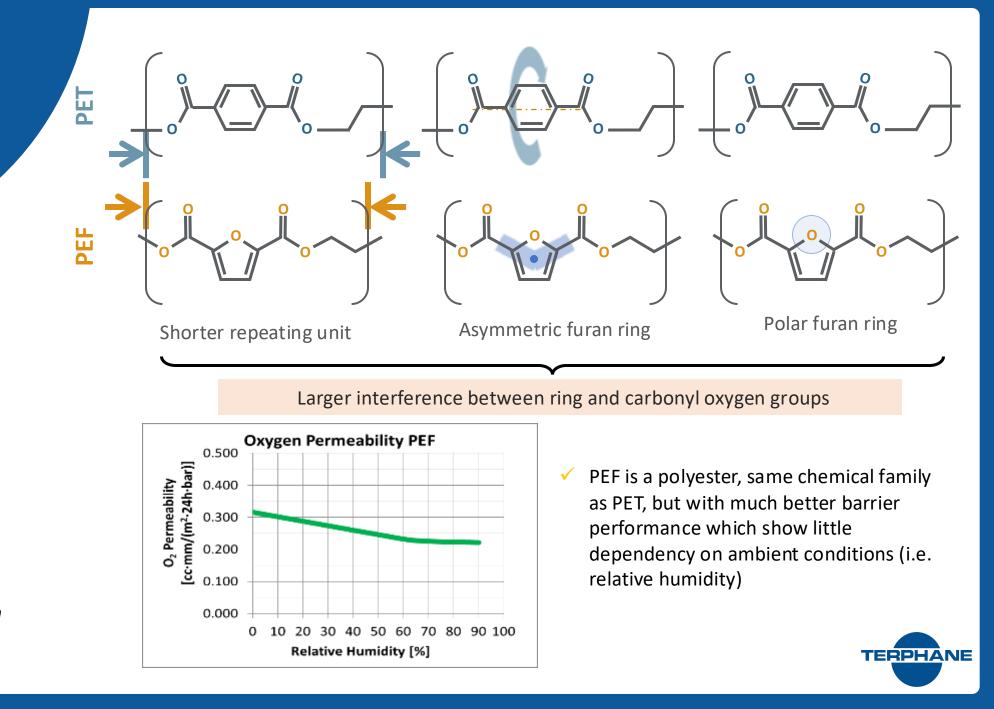
PlantMEG Pilot Plant (since 2019)

Pilot Biorefinery (since 2018)

Demonstrate technology & Technology testing Commercial ron-ol market testing **R&D** research Technology Develop technology demonstration economic feasibility **Commercialisation & Commercial launch** industrial roll-out via Product validation and technology licensing applications **)** Lab scale & Pilot Plants **Flagship Plant** Industrial

Mission: create & commercialise disruptive technologies & products to accelerate the transition to renewable & circular plastics


From technology development to commercialization

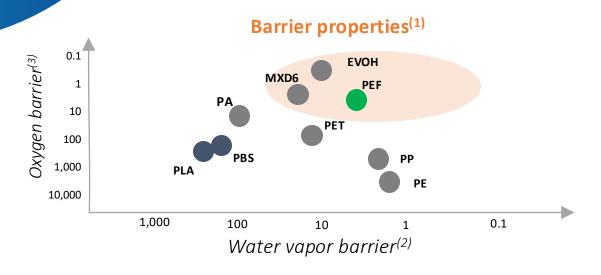


In addition, Avantium is developing a process to produce monomers and polymers from CO₂ using electro-chemistry

*Feedstock for our Flagship Plant is a by-product of wheat

Structure and molecular interaction

• PEF vs PET: a stiffer chain with more chain interaction


Comparison of the major characteristics of PET and PEF

Property	PET (Amorphous)	PEF (Amorphous)	
Molecule		$\left\{ \begin{array}{c} \mathbf{i} \\ \mathbf{i} \\$	
Density (amorphous)	1.36 g/cm^3	1.434 g/cm^3	
Density (crystalline, calculated)	1.455 g/cm ³	1.565 g/cm^3	
Melting temperature (T _m)	250–270 °C	210–230 °C	
Glass transition temperature (Tg)	~76 °C	~88 °C	
Crystallization time	2–3 min	20–30 min	
E-modulus (ISO 527/1A, 1 mm/min)	2.1–2.2 GPa	3.6 GPa	
Yield strength (ISO 527/1A, 10 mm/min)	50–60 MPa	90–100 MPa	
O ₂ permeability * (@23 °C, 65% RH)	$2.5 \text{ cm}^3 \cdot \text{mm}/(\text{m}^2 \cdot 24 \text{ h} \cdot \text{bar})$	$0.23 \text{ cm}^3 \cdot \text{mm}/(\text{m}^2 \cdot 24 \text{ h} \cdot \text{bar})$	
CO ₂ permeability * (@23 °C, 0% RH)	$23.6 \text{ cm}^3 \cdot \text{mm}/(\text{m}^2 \cdot 24 \text{ h} \cdot \text{bar})$	$1.6 \text{ cm}^3 \cdot \text{mm}/(\text{m}^2 \cdot 24 \text{ h} \cdot \text{bar})$	
H ₂ O permeability * (@38 °C, 90% RH)	$0.9 \text{ g·mm}/(\text{m}^2 \cdot 24 \text{ h})$	$0.36 \text{ g} \cdot \text{mm}/(\text{m}^2 \cdot 24 \text{ h})$	

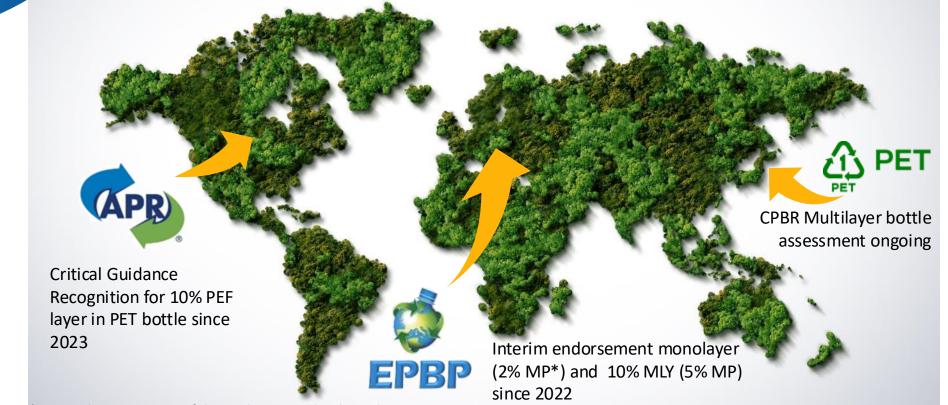
Ref: de Jong, et al. Polymers 2022, 14, 943.

PEF enhanced product performance

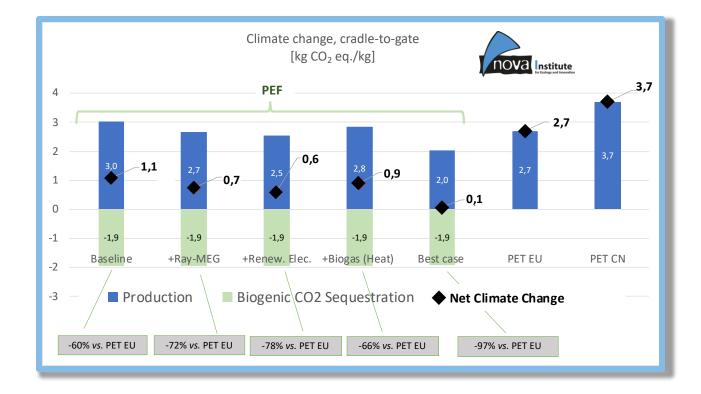
Notes:

- (1) Barrier properties for 50 μm film
- (2) Water vapor barrier: WVTR at (39 °C 85 %RH) $[g/(m^2 \cdot day)]$
- (3) Oxygen barrier: OTR (23°C, 0%RH) [mL/(m²·day·atm)]

Sources: European Bioplastics; Company Assessment based on: Markus Schmidt et al, Properties of Whey-Protein-Coated Films and Laminates as Novel Recyclable Food Packaging Materials with Excellent Barrier Properties (International Journal of Polymer Science, Volume 2012),

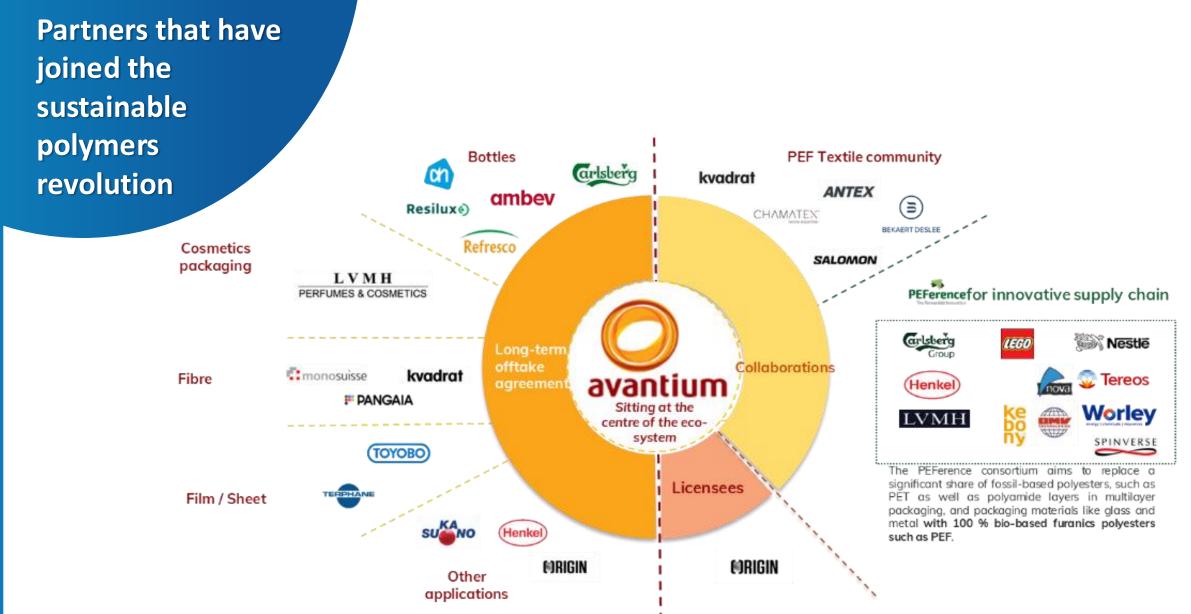

https://www.mgc.co.jp/eng/products/ac/nmxd6/barrier.html, http://asuka-platech.com/wp/wp-content/uploads/2013/12/BIOPBS.pdf

Word-wide recycling recognitions of PEF based containers



*MP=market penetration of the total European bottle market

Tomorrow's solutions have to facilitate the transition today

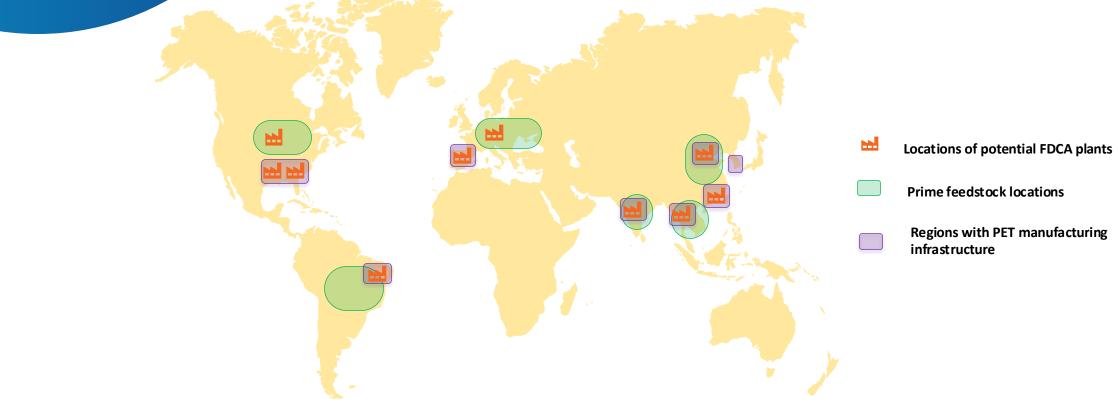


PEF allows for at least 60% carbon footprint reduction vs PET

- ✓ The baseline already shows a carbon footprint **reduction of 60%** versus PET produced in Europe
- ✓ Despite the small scale and young process technology, PEF resin can compete with highly commoditized PET
- Further reduction on Carbon Footprint is seen on application basis, where PEF properties enable improved performance and light weighting
- ✓ 30% additional GHG reductions expected by switching to **2G feedstocks**

FDCA and PEF commercialization roadmap

Licensed Plants Vision ()RIGIN e.g. (N 44 Industrial: 100kt/a Pilot: 10t/a Flagship: 5kt/a Value applications Providing customers with Niche, high-value applications FDCA & PEF for testing and application development purposes >100mt/y 5-10mt/a 300 kt/a Collaborations **Product Offtake** E Tomorrow Today Longer term


Industrial availability of affordable FDCA and PEF comes into view

Sources: Report Global Multilayer PET bottles Industry 2019-2020; The Future of High Barrier Packaging Films to 2024; Soft drink database 2015; Packaging master database 2015

Avantium

Global FDCA and PEF licensing opportunities for further scale

Avantium

Avantium's first-of-a-kind FDCA plant on stream in 2024

Further

accelerate

deployment

licensing

Prove Technology at **5 kt/a scale**

Selling PEF & FDCA at commercial scale

Progress

- 15 offtake agreements signed
- First commissioning activities have started in Q1 2024
- FDCA production expected on stream in 2025

Offices: HQ: Netherlands (Amsterdam) Asia (Japan) and America (Atlanta)

COMPANY OVERVIEW About us

KEY HIGHLIGHTS

17 plants in **11** countries

employees

Sales to +40 countries

LARGEST PORTFOLIO OF SOLUTIONS FOR FLEXIBLE PACKAGING

9 business units BOPP | CAST | BOPET | BOPA BOPE | PET SHRINK | COATING THERMOFORMING | PET STRAPS

BIGGEST FILM MANUFACTURER IN THE AMERICAS & EUROPE

+1 MILLION tons capacity

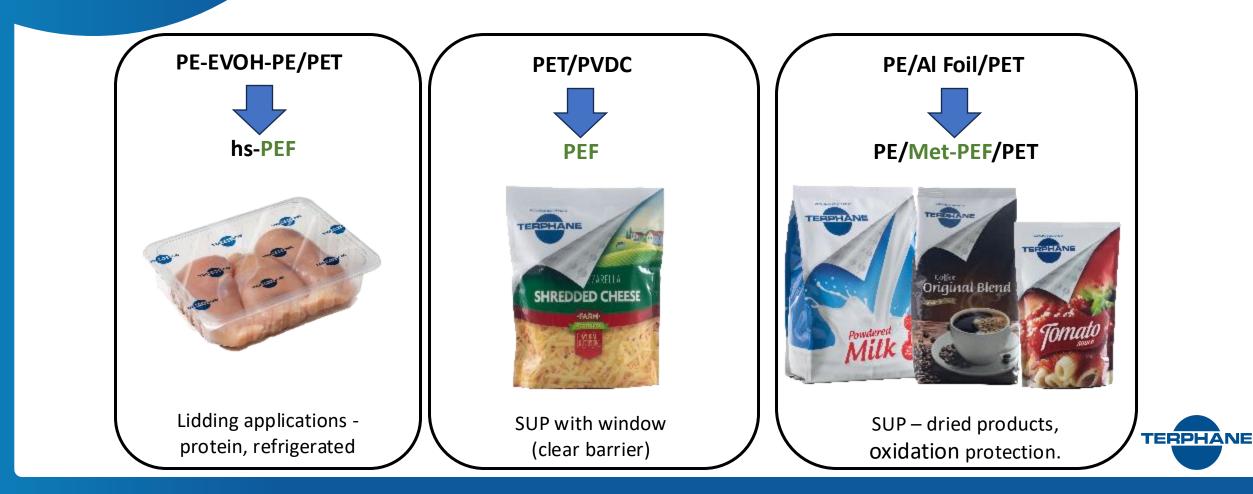
BOPEF Film Overview

BOPEF				
VS	Physical Properties*	BOPET	BOPEF	
BOPET	Thickness (µm)	12	12	
DOTET	Strength (MPa)	230-240	260-310	After
	Elongation at break (%)	90-100	40-50	Metallization*:
	Impact strength (J)	0.8	1.2	BOPET-met BOPEF-met
	OTR (cm³/m².day)	120	11	< 2.0 < 0.2
	WVTR (g/m².day)	50	15	<2.0 < 1.0
	*Avantium			*Avantium

✓ BOPEF has similar mechanical properties as BOPET.

- ✓ BOPEF has impact strength 50% higher \rightarrow better for lidding applications, possibility to downgauge.
- ✓ BOPEF has ~10x oxygen barrier and ~3x water vapor barrier than BOPET.
- ✓ BOPEF-met ~10x oxygen barrier and ~2x water vapor barrier than BOPET-met.
- ✓ Reduce need for barrier layers, as EVOH and PVdC and Al foil.

PEF - biobased high barrier substrate



Market & Applications

✓ PEF - Sustainability:

✓ Renewable content

- \checkmark PEF can be recycled together with PET
- ✓ High barrier property \rightarrow Monomaterial structure \rightarrow recycle ready

PEF Converting Processes

BOPEF – Corona Treatment

✓ Corona Treatment dosage = 30.4 W.min/m², air*.

✓ BOPEF has higher surface energy than BOPET.

 \checkmark BOPEF also maintain the surface energy level with time.

Conversion Process Printing PET and PEF

Company	Test	Ink	Conclusion		
		Wickoff WB			
	Dot Size	Actega WB	Both substrates had similar dot size.		
Avantium		(cyan, black, magenta)			
Flexo	Ink Rub Test 250 rubs	Wickoff WB			
		Actega WB	After 24hr: same performance PEF and PET.		
		(cyan)			
Terphane	Ink Adhesion	Sun Chemical SB	No ink removal at both substrates.		
Lab Coater	Tape 3M600, pull 45°	(white, blue, yellow, red)			

Dot size: magenta and cyan colors

Ink Rub Test 250 rubs, after 24hrs.

Ink adhesion White color

Conversion Process Printing PET vs PEF

Company	Method	Test	Ink	Conclusion	
		Rotogravure: K-Proofer 180 lines screen plate	SFP (blue) / PV77 HOKO (white) PV 77 HOKO (white) SFP (blue)/ UR 45 (white)	No removal at both substrates. No removal at both substrates. PET: 50% removal. PEF: no removal.	
Terphane*	Ink adhesion, Tape 3M610, fast pull	Flexo: 360/5.0 hand	NC 503 LINE G/S (blue) NC 503 LINE G/S (blue) / UR 48-1 (white) NC 501-4 (blue)	No removal at both substrates. No removal at both substrates. No removal at both substrates. No removal at both substrates.	
*Siegwerk. Des I	Moines, IA.	proofer	NC 501-4 (blue)/ UR 45 (white) UR 48-1 (white) UR 45 (white)	PET: 10% removal. PEF film: no removal. PET: 70% removal. PEF film: 50% removal.	

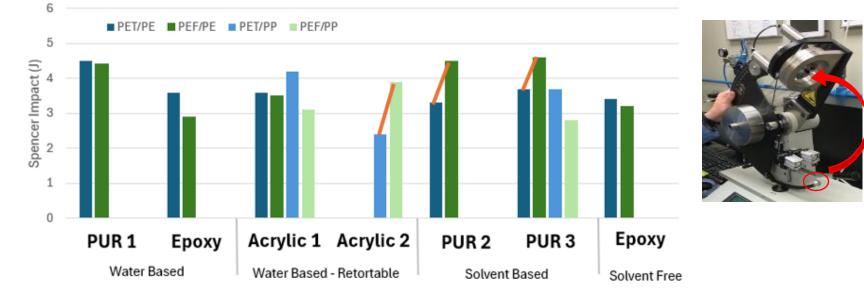
✓ Fast pull: more indicative of performance tested off-press.

✓ Similar performance, with PEF ink adhesion better than PET when compared results using inks UR 48-1 and UR-45.

Conversion Process Lamination PET vs PEF

Company	Ink	Lamination Result PET film	Lamination Result PEF Film
	SFP (blue) / PV77 (white)	Tear	339 gf/in
	SFP (blue)/ UR 45 (white)	365 gf/in	154 gf/in
	PV 77 HOKO (white)	Tear	-
	NC 503 LINE G/S (blue)	Tear	Tear
Terphane*	NC 503 LINE G/S (blue) / UR 48-1 (white)	Tear	Tear
	UR 48-1 (white)	Tear	Tear
	NC 501-4 FLEXO LINE, blue	610 gf/in	Tear
	NC 501-4 FLEXO LINE (blue)/UR 45 (white)	173 gf/in	229 gf/in
	UR 45 (white)	Tear	166 gf/in

*Siegwerk. Des Moines, IA.


✓ Samples: Siegwerk printing tests.

- ✓ Substrate: foil/CPP laminate film.
- ✓ Adhesive: HB Fuller 4245/2282 at 3.6 g/m².
- ✓ Laminations dried at oven at 30°C,1 week.
- ✓ Conclusion: PEF and PET films had similar performance

Conversion Process Spencer Impact (after lamination)

 \checkmark Laminated samples at 3-4 g/m² were submitted to Spencer Impact testing*.

*Avantium

- ✓ PET and PEF: similar spencer impact performance:
 - ✓ PEF laminated structures with solvent-based adhesives had better results than PET.
 - ✓ When laminated with PP and Acrylic 2 water-based, PEF structures also had better spencer impact performance than PET which could be dependent on the strength of the energy absorption by adhesion debonding during the impact.

Conversion Process

Metallization

6			Metal Adhesion		OTR		WVTR	
Company	Film Sample	OD			cm³/m². day	cc/100in ² . 24hrs	g/m². day	g/100in ² . 24hrs
Avantium* -	PET-met	3.0	1140	-	1.1	0.07	1.3	0.08
	PEF-met	3.0	> 2000	-	≤0.2	≤0.01	0.9	0.06
Terphane	PET-met	3.0	-	600	0.5	0.03	0.5	0.03
	PEF-met	3.0	-	900	<0.1	<0.01	0.1	0.01
		2.2	-	900	0.3	0.02	0.3	0.02

*Celplast. Ontario, Canada.

- \checkmark Flat sheet samples.
- ✓ Terphane metallization with Bobst Metallizer K5000 Expert using same process parameters as for the PET-met
- ✓ OTR at 25°C (77 °F), 1atm, 85% RH at MOCON Oxtran 2/22.
- ✓ WVTR at 38 °C (100 °F), 1atm, 90% RH at MOCON Permatran 3/34.
- ✓ Celplast and Terphane use different metal adhesion methods.
- ✓ Conclusion: Terphane PEF-met could be a replacement for Al foil.

Conversion Process Lamination after Metallization

✓ Sample: metallized PEF sample.

✓ Structure: PE/adh/met-PEF/adh/PET-ink

	OTR		WVTR				
Company	cm³/m². day	cc/100in². 24hrs	g/m². day	g/100in². day	Lamination Bond	Hot Fill Pouch	Boiling Test
Converter 1	0.3	0.018	0.3	0.018	All samples tear.	No delamination	No delamination
Converter 2	0.1	0.006	0.2	0.012	Delamination Force = 117 gf/in PET ink/adh/met-PEF/adh/PE	-	-

✓ Hot fill:

- \checkmark Made a pouch with laminated sample and filled with 50ml of water.
- ✓ Immersed in water at 90°C (194°F) for 30 min.
- ✓ Followed for immersion pouch in water at 25°C (77°F) for 5 min.

 ✓ Boiling test -Pasteurization: cut 10cmx10cm specimen and immersed in water at 95°C (203°F) for 30 min.

Conclusions

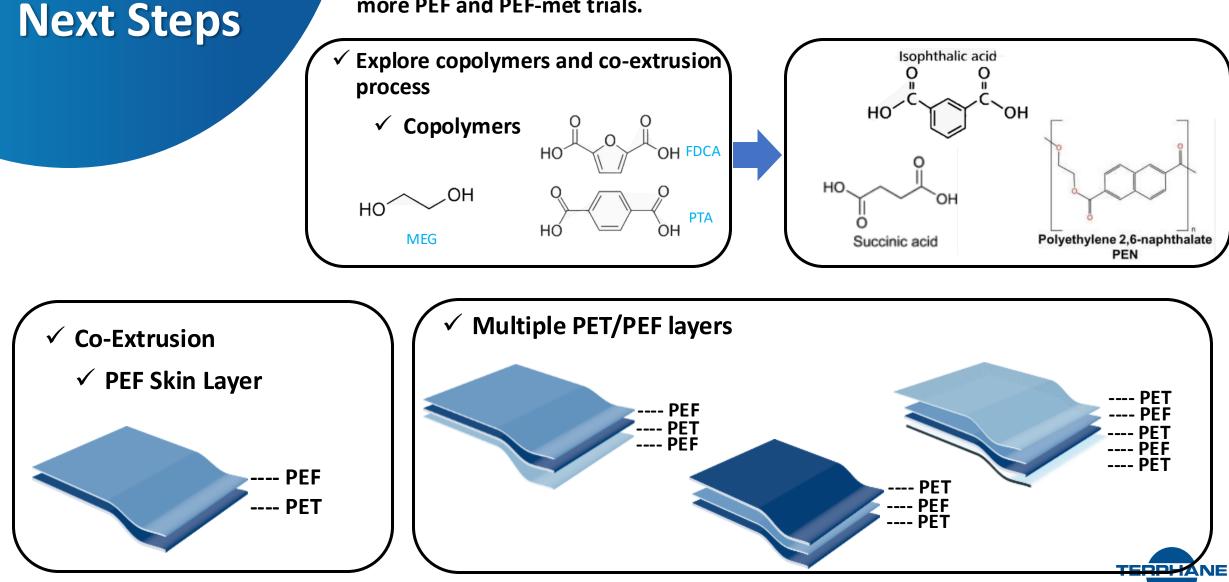
PEF resin

• Biobased, recyclable, high barrier, commercially available 2025.

BOPET vs BOPEF

- BOPEF has ~10x oxygen barrier and ~3x water vapor barrier than BOPET, so BOPEF can substitute PVDC and EVOH.
- When metallized, met-BOPEF has 10x higher oxygen barrier and 2x higher moisture barrier than a met-BOPET, so it can substitute Al foil.

Corona Treatment


- PEF films have higher surface energy than PET films.
- PEF films also maintain the surface energy with time.

Printing & Lamination

• PEF and PET have similar performance.

Further evaluations: Flex-cracking of laminated metallized structure, continue to run more PEF and PEF-met trials.

Next Steps

Explore possibilities for lidding applications and flexible packaging applications:

Marcos Vieira marcosvieira@obengroup.com www.obengroup.com Sheila Khodadadi Sheila.Khodadadi@avantium.com www.avantium.com

We appreciate your time and interest!

At Brueckner Group USA, we are committed to delivering high-quality solutions, exceptional service, and long-term partnerships across North America.