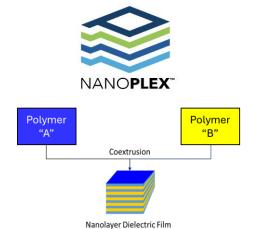


Dielectric Energy Storage Films


A Key to Unlocking Sustainable Fusion Energy

Dr. Micheal Ponting Chief Science Officer

Peak Nano Films LLC 7700 Hub Parkway Valley View, OH 44125 mponting@peaknano.com

NanoPlex[™] - Nanolayered Metamaterials

128-Layer NanoPlex capacitor film SEM image.

Millions of Metamaterials

NanoPlex is a family of nanoscale (1/billionth of a meter) metamaterials that can be programmed to meet various applications, including optics, energy storage, product packaging, and protective films, to name just a few.

Optics, Power & Space

Peak's nanoscale technology changes our ability to bend and block light, sound, and electromagnetic waves, conduct or insulate electricity, and control atmospheric conditions, ushering in previously unimaginable possibilities.

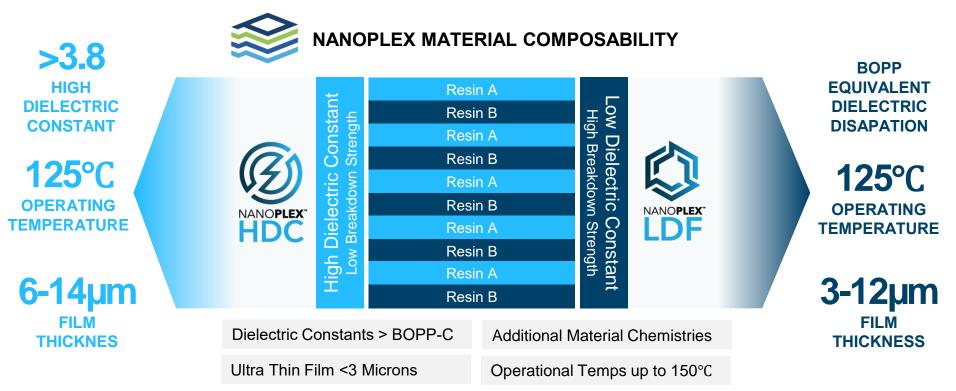

Over 20 Global Patents

NanoPlex is protected by over 20 global patents for our core technology, manufacturing processes, and product implementations, which creates a defensible and differentiated position in our markets.

100% US-based Supply Chain

Peak technology and products are engineered and manufactured in the United States. We provide a strategic advantage to our customers, who must ensure they have secure supply chains.

Peak Film Facility High Precision development and validation of application specific NanoPlex Films.


Peak Optics Facility World Class facility for the processing, fabrication, and metrology of optics and optical systems.

Film Markets and Supply Chain

NanoPlex for Fusion

2025 Fusion Landscape

Fusion machines or plants under development in 2025

Private investment in fusion energy through Q1 2025

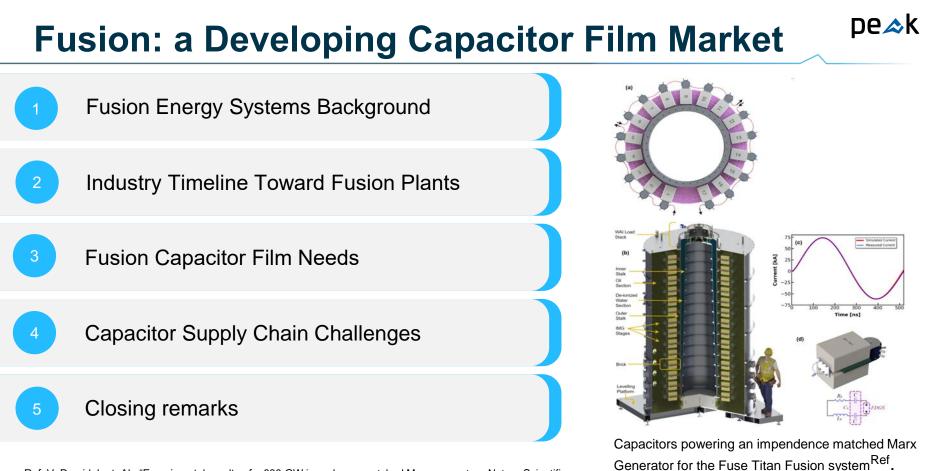
\$8B+

2035

FIA member expectation for electricity to the grid

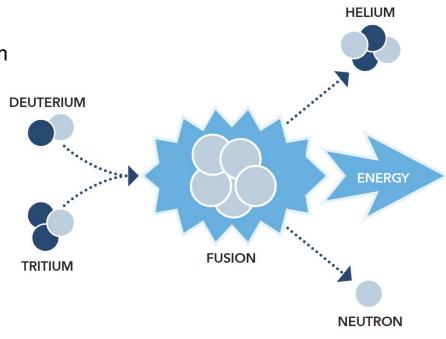
Of fusion companies are <u>developing magnetic</u> fusion

51%



Public funds in fusion energy programs for 2024/2025

Target price for electricity to make fusion energy viable


https://www.flinl.gov/article/50616/llnls-national-ignition-facility-delivers-record-laser-energy | http://https://www.fusionindustryassociation.org/wp-content/uploads/2024/07/2024-annual-global-fusion-industry-report.pdf https://www.fusionindustryassociation.org/wp-content/uploads/2024/07/2024-annual-global-fusion-industry-report.pdf https://ignitionresearch.com/reports-fusion-energy-worldwide-demand-market-report// | https://fusionenergybase.com/ | https://thefusionreport.substack.com/publish/posts/detail/160339203?referrer=%2Fpublish%2Fposts

Ref: V. Damideh et. Al. "Experimental results of a 330 GW impedance-matched Marx generator. Nature Scientific Reports, 14, 16889. Available online - https://www.nature.com/articles/s41598-024-67774-4) © PEAK NANO SYSTEMS, LLC

What is Fusion Energy?

- Fusion Energy is the same process that powers the Sun.
- Fusion combine two light atomic nuclei to form a single heavier nucleus, releasing energy.
 - Example Deuterium + Tritium -> Helium
- High Temperature Process
 - Combining light nuclei to form a heavier nucleus at over 100 million °C.
- Fusion Ignition is Based on Lawson's Criterion
 - Temperature
 - Electron Density
 - Confinement time

Why Fusion?

NOT A HYDROCARBON

Hydrocarbons are finite and fusion energy is infinite.

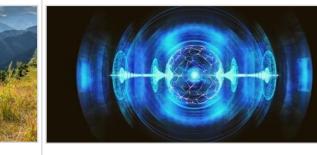
Fusion fuels are based primarily on version of hydrogen from sea water and can create tritium during the fusion process.

CLEAN PROCESS

The fusion process do not produce harmful waste products

Fusion energy is a safe and clean process the is easily showdown as required and does

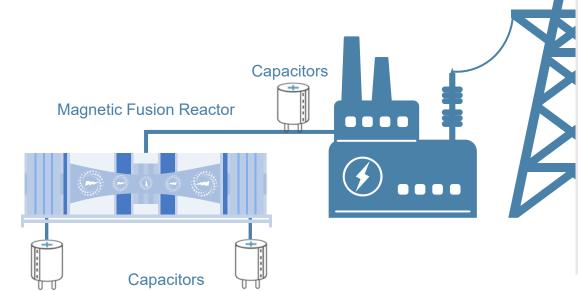
COMPACT FOOTPRINT


Fusion machines can be deployed in small footprints for many applications

Fusion power systems can be as small as a microwave for transportation uses and as large traditional power plant to power cities.

not produce pollution.

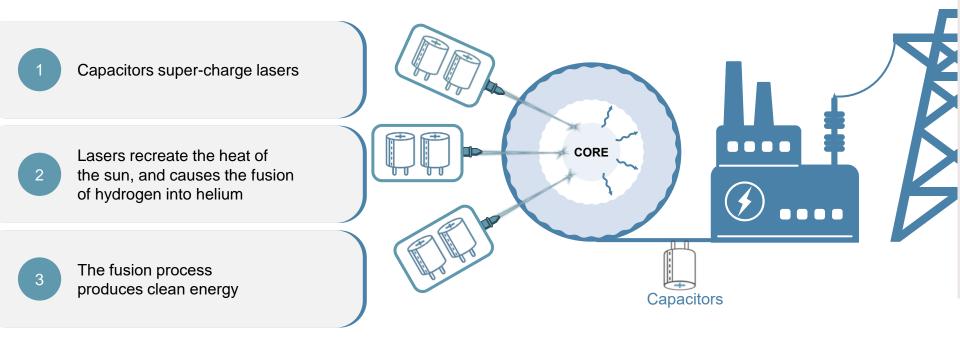
Magnetic Plasma Based Fusion

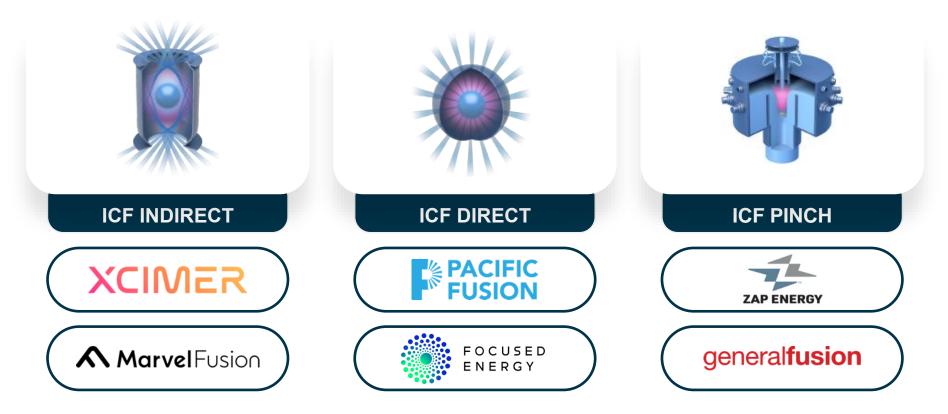

Deuterium and Tritium are heated to plasma conditions by magnets using a field reverse condition

2

Magnets accelerate the plasma to force it to collide in the middle of the chamber

The merged plasma is compressed by magnetic forces, forcing it to be heated to 100 million centigrade, which causes the fusion reaction to occur


When the plasma expands again it reverses the magnetic field, which creates an electric current that is used to generate electricity.


Fusion Flavors: Magnetic confinement

Interial Confinement Fusion (ICF) Energy

Fusion Flavors: Inertial confinement (ICF)

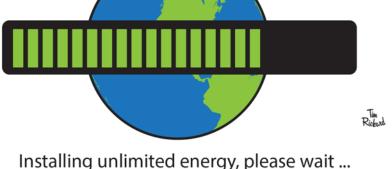
Fusion in 2025: Q>1

Reaction is net positive – so the engineering is working.....

Overall reactor and GRIN interface system is not yet positive

Ref 1. https://www.llnl.gov/article/49301/shot-ages-fusion-ignition-breakthrough-hailed-one-most-impressive-scientific-feats-21st

2. https://euro-fusion.org/eurofusion-news/dte3record/


3. https://www2.yicaiglobal.com/news/chinas-energy-singularity-makes-fusion-energy-breakthrough

© PEAK NANO SYSTEMS, LLC

If Fusion Were As Easy As Rocket Science, It Would Have Been Done In The 1960's

Why is Fusion Taking So Long?

- Fusion research has been running since WWII atomic programs, so what's the hold-up?
 - Answer: It's hard!
- Requires multiple, multi-disciplinary engineering breakthroughs:
 - Ignition science and supply chain for tritium targets
 - Control of pulsed energy/plasma onto tiny 0.5 to 5 mm hydrogen targets
 - Materials that withstand extended exposure to high reaction temperatures/energy release
 - > 100 million degrees or 7X hotter than the sun
 - Need high efficiency energy capture and transfer to GRID

Uncertainty PRINCIPLE

FUSION POWER

Fusion Energy Investments have Upped the Anti

>\$8+ Billion of private investment to develop and <u>demonstrate</u> operational fusion plants since 2021.

TOP FUSION CO	MPANIES BY FU	NDING			THE FUSION REPORT
Company	Fusion Type	Founding Year	Total Funding (\$M)	Investors	Link
Commonwealth	Magnetic Confinement (Tokamak)	2018	\$2,000.0	Breakthrough Energy Ventures, Google, Khosla Ventures, Tiger Global Management	www.cfs.energy
🖓 tae	H-B11 field- reversed configuration	1998	\$1,200.0	Google, Chevron, Sumimoto, Venrock, Vulcan Capital, RUSNANO, Reimagined Ventures, TIFF	www.tae.com
HELION	D-He3 magneto- inertial fusion	2013	\$1,000.0	SoftBank Vision Fund 2, Lightspeed Ventures, Sam Altman, Mithril Capital, Capricorn, Good Ventures, Newcor	www.helionenergy.com
	Pulsed magnetic fusion	2023	\$900.0	www.pacificfusion.com	
general fusion	Liquid metal magnetic compression	2002	\$455.0	BDC, Braemer Energy Ventures, Segra Capital Management, Jimco, Chrysalis Venture, Khazanah Nasional, SET Ventures	www.generalfusion.com
	Unstated	2005	\$414.0	Baillie Gifford, Fidelity, Koch Disruptive Technologies, Government of the Netherlands	www.shinefusion.com
fokamak Energy	Magnetic Confinement (Tokamak)	2009	\$335.0	East X Ventures, Lingotto inverment Management, British Patient Capital, Furukawa Electric, BW Group, Sabanci Climates	www.tokamakenergy.com
ZAP ENERGY	Sheared-flow- stabilized Z-pinch	2017	\$327.0	Soros Fund, Lauren Powell Jobs, Addition, Breakthrough Energy Ventures, Chevron Technology Ventures, DCVC, Energy Impact Partners	www.zapenergy.com
Marvel Fusion	H-B11 laser inertial confinement	2019	\$123.0	HV Capital, Earlybird Venture Capital, Athos Venture, Primepulse, Plural Platform, Deutsche Telecom	www.marvelfusion.com
O first light	Projectile-based inertial fusion	2011	\$114.0	Braavos Capital, Hostplus IP Group, Oxford Sciences, Tencent, invesco, Sandaire, ParkWalk Advisors	https://firstlightfusion.com/
XCIMER	D-T laser inertial confinement	2021	\$100.0	Breakthrough Energy Ventures, Lowercarbon Capital, Prelude Ventures, Ernerson Collective, Gigascale Capital, Starlight Ventures	https://xcimer.energy/

Global Fusion Market Development & Goals

2025-2028	2025-2028	2028-2032	2032-2038	2045-2050
Global	Fusion	Commercial	Utility-Level	10% of the Grid
Regulatory	Prototypes	Fusion Systems	Fusion Systems	Fusion Systems
NRC1, UKAEA and	National Labs and	Microsoft & Nucor	TVA, Duke, Sempra	Global Brown Field
other national	private companies	placed orders.	are early supporters	and Green Field
regulation are set.	Up to 100MW	Up to 400MW	clusters and 1+GW	deployments

1: https://www.fusionindustryassociation.org/us-senate-passes-advance-act-including-legislation-to-codify-us-fusion-regulations/

Commercial Fusion Plants Breaking Ground

	Tokama	Magnetic Mirror	Stellarator	ICF Direct	Z-Pinch	Tokamak	ICF Direct
Fusion Company	Commonwealth		TYPE ONE ENERGY		general fusion	Tokamak Energy	FOCUSED ENERGY
Partner(s)	Dominion Energy [®]	Microsoft	TENNESSEE VALLEY AUTHORITY	Lawrence Livermore National Laboratory	Innovation, Science and Economic Development Canada	UK Industrial Fusion Solutions	RWE
Capacitor Flim	250,000 Pounds	5,000,000 Pound	250,000 Pounds	1,000,000 Pounds	250,000 Pounds	300,000 Pounds	1,000,000 Pounds
Power Produced	400MW 2035	400MW 2028	350MW 2030s	100MW 2030s	400MW 2030s	40MW 2030s	100MW 2035
	Source Link	Source Link	Source Link	Source Link	Source Link	Source Link	Source Link

Fusion Energy Scalability Challenges

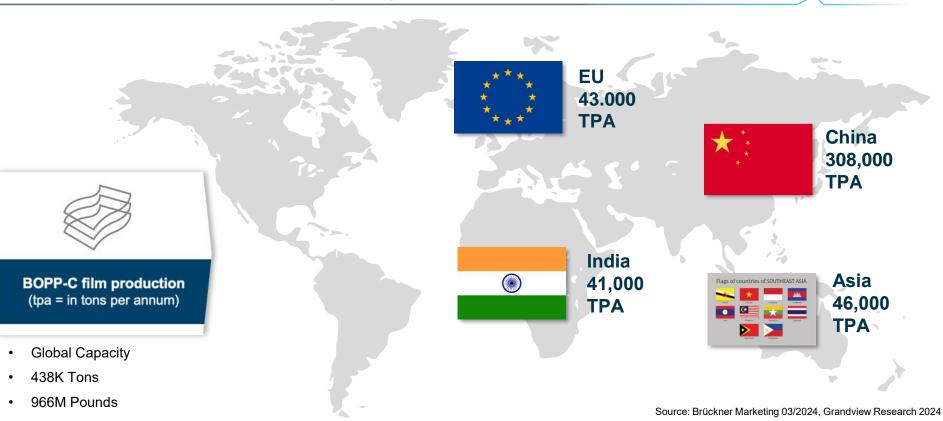
Fusion Scalability Challenges

- Fusion still needs to reach close to 24/7 plasma containment
 - We still have to transfer the heat from fusion into steam for generators
- Tritium fuels supply are very limited and tritium blanket are not yet the answer

2

3

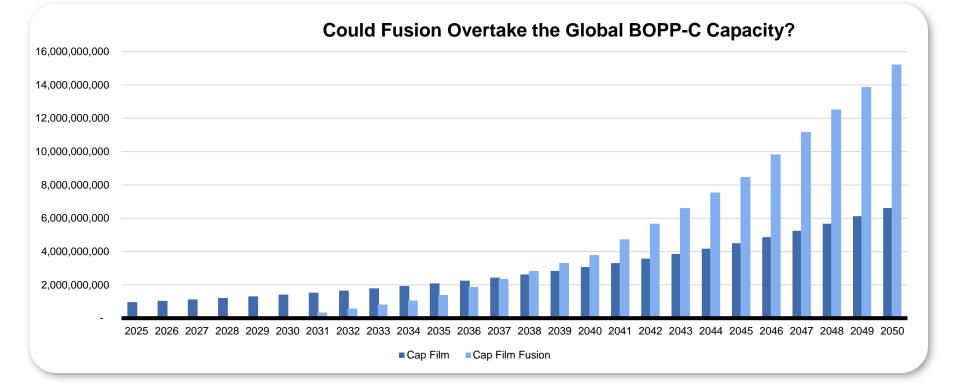
Over 70 different plant designs makes a scalable supply chain very difficult



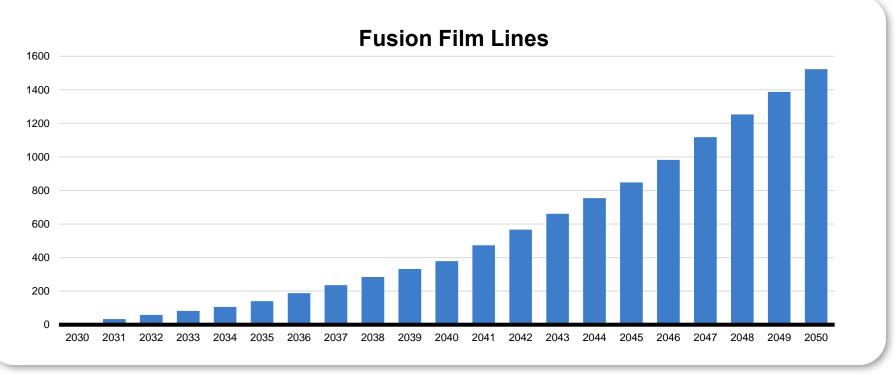
China tariffs threaten required critical minerals, materials and BOPP-C Film

* BOPP = Biaxially Oriented Polypropylene

Global BOPP-C Production: The world is ready right.....

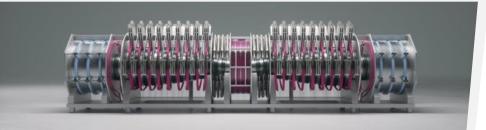


Projected BOPP-C Film Growth in Pounds


7,000,000,000																											
6,000,000,000																									_	_	
5,000,000,000																					_					_	
4,000,000,000																											
3,000,000,000													_													-	
2,000,000,000																											
1,000,000,000																											
	2025	2026	2027	2028 20	29 2	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	3 2049	2050	

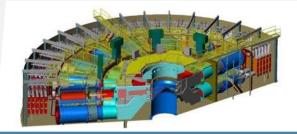
Fusion Will Exceed World Capacity in 2037

pe∧k


Fusion Energy Film Lines @ 7.5M/Line

pe∧k

We Need More Power!


pe_≫k

50 MJ Helion fusion reactor with associated capacitor bank (structure behind). 2024 design of potential capacitor bank contains roughly 1.2 million pounds of film.

Current Fusion landscape is in the "show me" phase

Goals are "demonstrator" scale fusion systems

Next Gen. 2035 Fusion Reactor

91 meters wide

Capacitors increase from 2,100 -> 13,500

Dielectric cap. film from ~180K -> 1-1.5 Million lbs.

Schematic representation of Sandia's planned next generation reactor, which projects to use between 1 and 1.5 million pounds of capacitor film to pulse its lasers.

Discussions starting for "Power Plant" sized (> 100 MJ) Fusion System and schedules

 ARPA-E presentation¹ on potential 10-year DOE ICF Program targeted for 2035 operations

Company	Approach	Name	Size	Target Date:
General Fusion	Magneto Fusion (MTF)	LM26		2026
Helion	Magneto-Inertial fusion		50 MJ	2028
Commonwealth/MIT	Magneto Fusion (MTF)	SPARC	50-100 MJ	2025
NIF/LLNL	Inertial Fusion Energy (IFE)		20-150 MJ	2009-2024
Sandia	Inertial Fusion Energy (IFE)	Z	up to 300 MJ	1996-2024

1. Ahmed Diallo presented at IEEE Fusion Workshop, June 2023. © PEAK NANO SYSTEMS, LLC Key

supporting

components

system

"I'm Giving it All I Got" – Supply Chain Challenges

Building multiple demonstrator or any "power plant" fusion systems need supporting technology advances & increased capacity to succeed

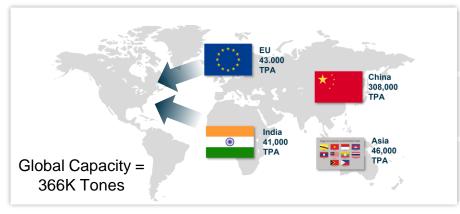
High Speed Switches: All options needed at higher production rates and lower costs than currently offered

- Spark gaps low lifetime
- · Solid state insufficient current/voltage rating
- · SiC based low current/voltage and high cost

Energy Storage:

- Needs include longer lifetime (move from million to billion shot lifetimes)
- · Require higher energy densities in ICF systems
- Overall volume of required caps (2,000+/yr. per fusion system) require paradigm shift in manufacturing process and infrastructure

Capacitor Scaling Case Study							
Ask: Support 100 Fusion power plants (100 MW)							
Capacitors required per year for 1 fusion plant	10,000						
Annual U.S. high voltage cap. mfg. capability	12,500						
Capacitor lead time for 1 plant	0.8 years						
Capacitor lead time for 5 plants	6.3 years						
Capacitor lead time for 25 plants	20.0 years						
Capacitor lead time for 100 plants	80.0 years						


De≫k

Global Supply Chain Landscape

Global capacity of key components is not equal (Case study: capacitor dielectric film)

What is a Pulsed Power Capacitor? Crude Oil Refineries Plastic Resin Reactors Capacitor Film Extrusion Film Metallization Capacitor Winding & Fabrication Capacitor System Integrators Image: Crude Oil Refineries Image: Capacitor Film Extrusion Film Metallization Capacitor Winding & Fabrication Capacitor System Integrators Image: Crude Oil Refineries Image: Capacitor Film Extrusion Image: Capacitor System Integrators Image: Capacitor System Integrators Image: Capacitor System Image: Capacitor System Integrators Image: Capacitor System Integrators Image: Capacitor System Integrators

Today, North America is 100% dependent on foreign sourcing of dielectric films to fabricate capacitors.

Global electrification efforts are leading an increased demand for energy storage film

- Films markets: GRID storage, EV, power conditioning, renewables, fusion
- Capacity models are predicting a global film shortage as earlier as 2028

Fusion growth has the potential to become growth leader and highest volume consumer of dielectric film in a market with tightening supply

Closing Thoughts

- Fusion is proven to work at "lab" scale
- Scale-up is the next challenge
 - Reactor and overall system engineering challenges to increase efficiency
 - Supply chain is becoming a priority for companies involved
- Over \$8B in private capital through Q1 CY2025
 - \$7.1B FIA in 2024
 - & 2025 Q1 <u>The Fusion Report</u>
- Fusion on the Grid Timeline
 - Helion Deployment in 2028
 - CFS/Dominion in mid 2030s
 - TypeOne/TVA in mid 2030s
- We All Need More Bruckner Capacitor Film Lines!

Thank You Brueckner!

- Questions?
- Follow-up questions to Peak:
 - Technical:

٠

٠

- Michael Ponting Chief Science Officer <u>mponting@peaknano.com</u> 216 - 374 - 5190
- Marketing & Sales:
 - Shaun Walsh Chief Revenue Officer <u>swalsh@peaknano.com</u> 949 - 922 - 7472

