

Extrusion Beyond Your Imagination

Table of Content

- 1. In-Line-Extrusion
- 2. Line Set-Ups
- 3. Heat Inspection
- 4. Soft Touch Processes
- 5. Die Concepts
- 6. Feed Blocks
- 7. High Speed Extrusion
- 8. Controls

In-Line-Extrusion

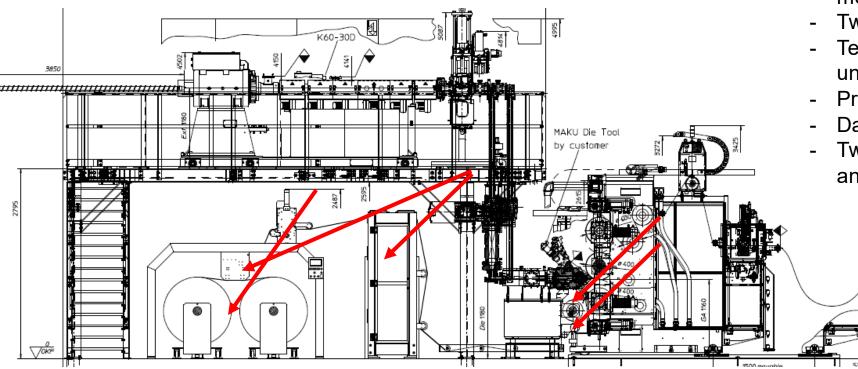
The world has changed!

- 70% of extrusion lines manufactured by Kuhne are used for in-line extrusion!
- A lot of converters dont get huge "long term contracts" anymore.
 - Smaller quantities of different products have to be manufactured.
 - "Just in Time" supply with smaller but dedicated lines.
 - A lot of companies try to step back from roll stock warehousing due to uncertain buying behaviours.
- Shipping became more expensive and prices volutile. De-centalized manufacturing is growing!
- It is difficult to find good skilled operators in most regions. Smaller machinery has less barriers and risks.
- Process controllability became more important to have repeatable processes and a consistant product quality.
- Sustainable processing is key to success!
 - Energy consumption | Energy recovery
 - Less raw material consumption | High amounts of PCR
 - Quick changeovers

In-Line-Extrusion

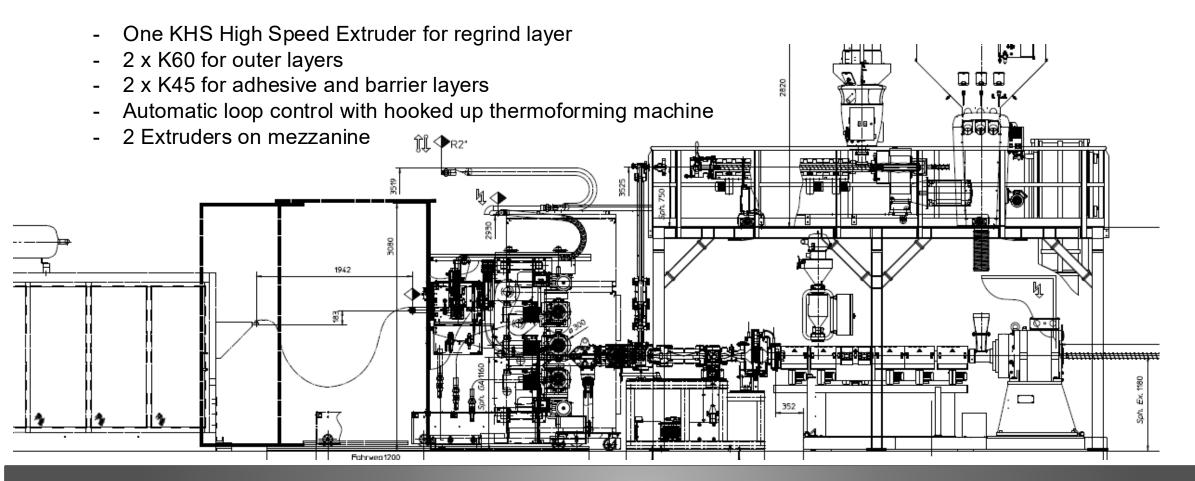
What is important to keep in mind?:

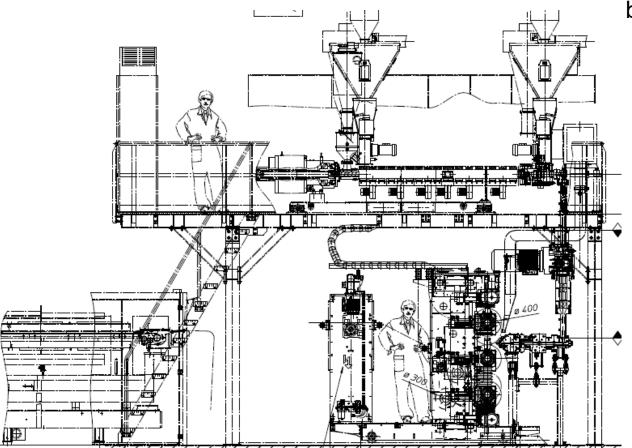
- Advatages:
 - Faster cycle times due to sheet temperatures above usuall temperatures.
 - Thermoforming above cristalization point provides better quality control on some raw materials.
 - The line footprint is small and highest yield rates can be achieved with smart set-ups.
 - Better quality control on final products due to elimination of roll warehousing.
 - Higher energy efficiency compare to off-line extrusion.
 - Thermoformer is the MASTER! The extrusion line follows using loop control mechanisms.
 - No edge cut = Less waste/regrind
- Raw Material:
 - PP & PS is standard
 - Lots of requests nowadays for PET & PE (different roll stacks & other motor concepts)


In-Line-Extrusion

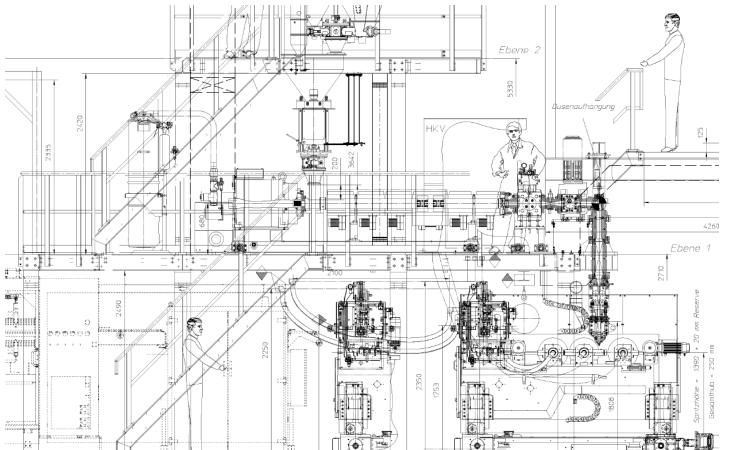
Technical framework:

- Sheet Width \rightarrow Usually around 700 to 840 mm, wider usually only for the US
- Sheet Thickness \rightarrow 200 µm to 3,5 mm
- Set-up today:
 - Small roll diameters | US grades often need bigger roll diameters
 - Haul-Off-Unit as close to the roll stack as possible
 - Sheet thicker 1,5 mm needs post cooling rolls
 - Optional heat tunnel between roll stack and thermoformer improves temperature variation on sheet
 - Line speeds of up to 1.600 Kg/h \rightarrow Much higher than 10 years ago!


A/B/A PP Extrusion line with In-Line-Concept with in-line lamination of COEX7 film.

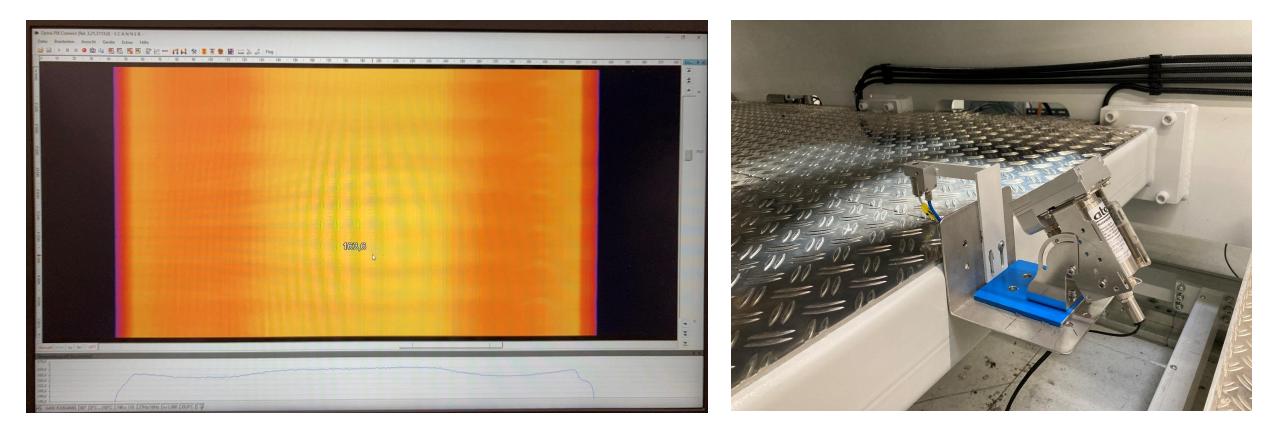

All adjustable from HMI and linked to recipe storage!

- Two KHS High Speed Extruders on mezzanine
- Two station unwinder below mezzanine
- Tesion control loop for barrier film from unwinder
- Pre-heating roll for barrier film
- Dancer and automatic splicing
- Two post cooling rolls, individually driven and cooled


COEX7 PP Extrusion line with In-Line-Concept for better layer distribution during thermoforming

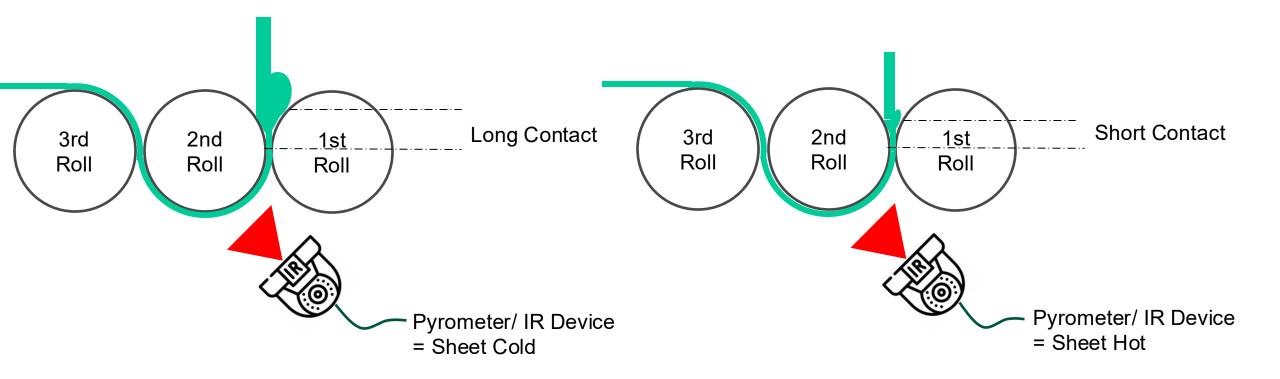
COEX7 PP Extrusion line with In-Line-Concept for better layer distribution during thermoforming

- Platform above thermoformin machine for smaller machine footprint
- One KHS High Speed Extruder for regrind layer
- 2 x K60 for outer layers
- 2 x K45 for adhesive and barrier layers
- Automatic loop control with hooked up thermoforming machine

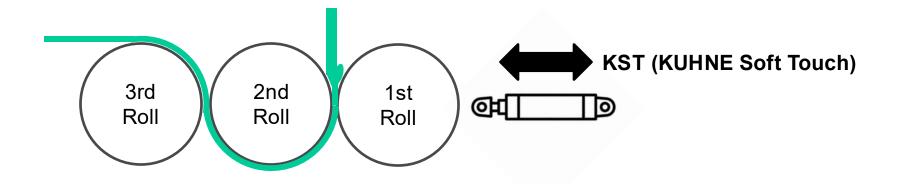


A/B/A PET Extrusion line with In-Line-Concept

- Platform above thermoformin machine for vertical extrusion
- 1 x K70 for outer layers
- 1 x K90 for main layer
- Automatic loop control with hooked up thermoforming machine
- Infra-Red Dryer from Kreyenborg
- Double venting on each extruder with Edwards Vacuum Pump
- Nordson Back-Flush Screen Changers


Heat Inspection

Temperature profile gives a good indication on thickness and melt bank adjustment.



The horizontal roll stack set up is a game changer as we can control the melt bank more precise!

Soft Touch

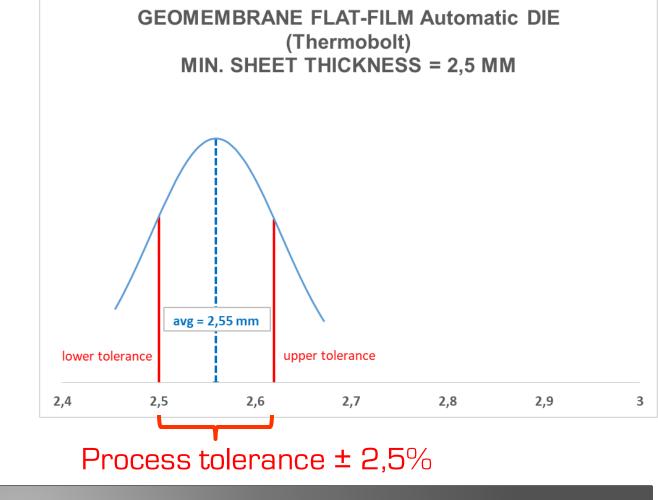
We adjust the slight difference over the time \rightarrow the gap is not fix the gap is able to breathe

- We pair each extruder with a melt pump to reduce flow rate variation down to approx. +/- 0.5%.
- Hydraulic cylinder with integrated distance measuring sensor \rightarrow We measure right where the counter forces occur!
- Servo Hydraulic with adjustable pressure \rightarrow We can keep any pressure at the adjusted position!
- We adust a pressure that opens for melt to pass if pressure increases due to high melt bank!
- We keep operators away from adjusting melt banks all shift long and keep a better sheet thickness variation.
- Considering the above enables us to extrude sheet also lid film that is almost "stress free".

Soft Touch

	Hauptbildschirm	Motor ala	arm 0, 0, 8	15:17:34	User: user3	Level: 3	Fa.Kuhne	1 1	Exit
& SBI	Messung 0/1	Rollenwechsel	Produkt Parameter	Sensor	Regelung	ı (Passwort	<u>^</u>
	Analyse	Rollen Protokoll			Kunden Einstellu	ungen	Text		<u> </u>
Dicken Diagramm			702,0 [mm]		re	ference curve	zoom	Print	:
								Akt.Messung 305,125	[µm]
305,0							li	Mittelwert 303,380	[µm]
302,5							~~†	2 Sigma 2,24	[µm]
200,0								Max: 1,42	(304,480)
290,0							·····	Min: 3,97	(299,090)
287,5 ···· 980	915 850	785 720	660 595		465 400	335	270		
811,2									

In-Line-Extrusion today

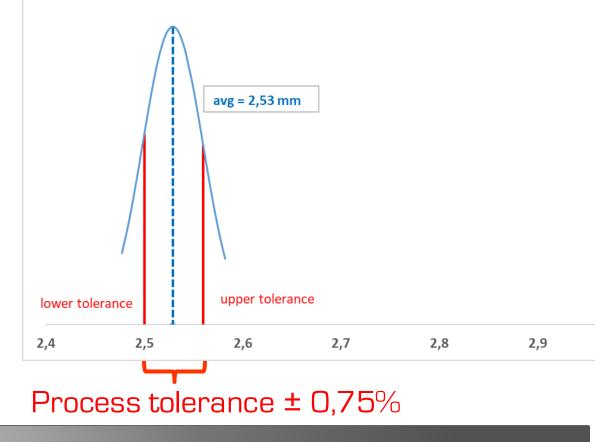

© Kuhne Group – proprietary information all rights reserved

Production Quality and Cost Comparison

Flat Film Sheet Process with Thermo Bolts:

- Thermo Bolts can bring the accuracy down to +/- 2.5%
- Reaction time is not fast. Expansion is quick but cool down process takes a while.
- Auto Gap Control only for about 150 µm, rough adjustment still manually.
- 1.100 mm die has 36 thermos bolts.
- 0,075 kW/h consumption each (Ø).
- → 240 bolts x 0,075 kW/h each x 8.000 h/a

= 21.600 kW/a



Production Quality and Cost Comparison

Flat Film Sheet Process:

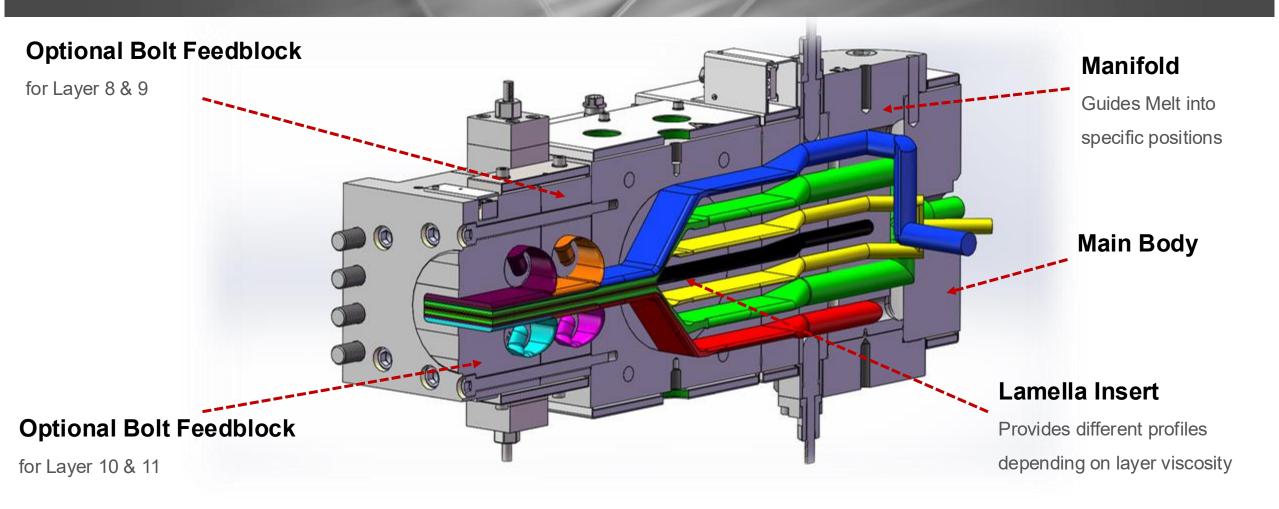
- Linear Robot or Stepper Motor Adaptor
- Adjustment of Flex Lip and Linear Lip as well as Restrictor Bar possible.
- Faster reaction time for custom sheet manufacturing!
- Higher precision with thickness variations of +/- 0.75%
- Energy consumption only if unit operates.
- Also for recipe changes and main adjustments.

GEOMEMBRANE FLAT-FILM DIE Robot Type MIN. SHEET THICKNESS = 2,5 MM

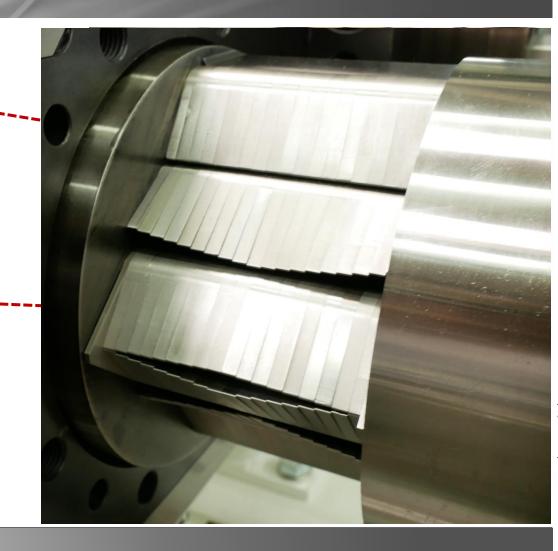
Flat Film Die Type BD84F with Fast Gap

- Moveable lip
- Push & pull rod connected towards threaded bar
- Connection of push/pull rod and lip
- Lower flex lip movement: +/- 2.0 mm
- Upper flex lip movement: 2.0 mm
- Total range: e.g. 0.5 6.5 mm

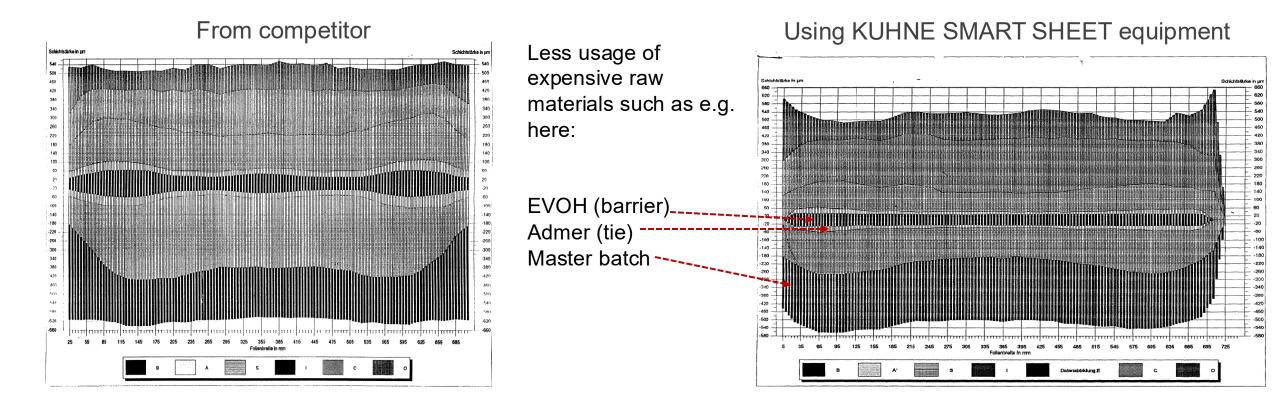
In-Line-Extrusion today


000

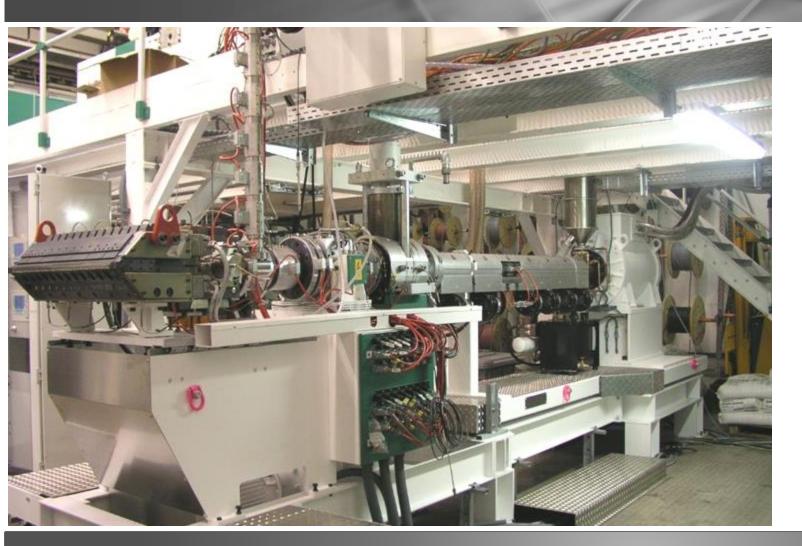
Flat Film Die Type BD84F with Fast Gap



Feedblocks

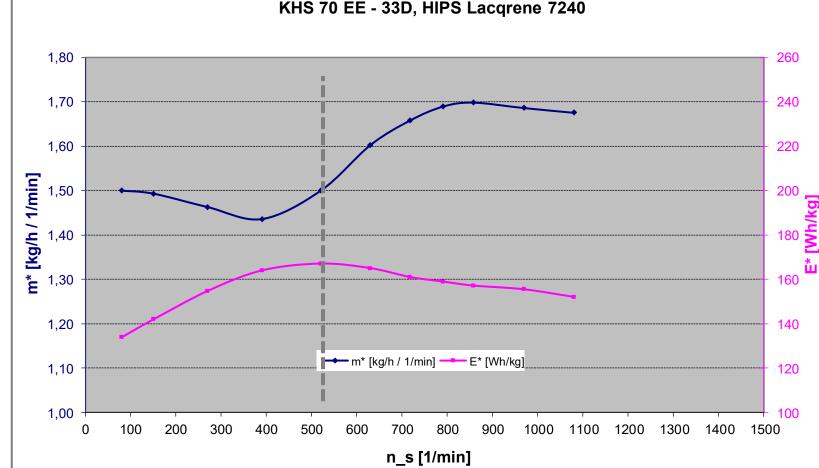

Feedblocks

- Flow Channel individually adjustable for each layer
- Can be integrated with A/B/A configuration providing connections for the future (A|B|B|B|B|A)
- All Layers come together at the same spot
 No issues with flow turbulences and counter
 pressures



Precise layer distribution reduces material and energy consumption and increases profitability!

Extruders



- Three sizes of High Speed Extruders
- Length 33 or 39 L/D
- Single and double venting
- Direct Drives & High Torque Motors
- Planetary gear motors or AC + Gear Box on demand
- KHS 60
- Drive 68 116 kW
- Output range: 240 320 kg/h
- KHS 70
- Drive 140 440 kW
- Output range: <u>500 1.800 kg/h</u>
- KHS 90
- Drive 495 kW
- Output range: 2.400 kg/h

Throughput/Energy Relation

Degree of efficiency increases above 500 rpm on proposed material *!

* Results are material related!

KHS 70 EE - 33D, HIPS Lacgrene 7240

70 mm (2.75") maximum throughputs:

- PS up to 1,800 kg/h (3,968 lb/h)
- PP up to 1,600 kg/h (3,527 lb/h)
- PLA up to 1,200 kg/h (2,645 lb/h)
- PET up to 1,200 kg/h (2,645 lb/h)
- ABS up to 800 kg/h (1,764 lb/h)
- PE up to 800 kg/h (1,764 lb/h) *Packaging Grades, no "A" or "Z"

VBNr.	02 / 25	Customer	stomer:			Product	PP-	-Test		Raw Material	PP	
Date	18.02.2025	Line	KHS70/K45/0	GA4.4.4-100	00	Supplier	Bor	realis		Grade	HC 205	TF
Feeding	smooth barrel		Extruder	K70-33D	/ B	S	crew	EMF	-S 17	Pump	Nordson EP371 SE	

Extruder:

TE	ns	ls	Ps	Ms	g/n_s	Es	pvS	Tm	Tm _{man}
[°C]	[min ⁻¹]	[%]	[kW]	[Nm]	[kg/h/min ⁻¹]	[Wh/kg]	[bar]	[°C]	[°C]
15	161	41%	29,54	1752,06	1,012	181,2	71	218	/
15	279	50%	62,43	2136,66	1,154	193,9	89	219	/
15	525	57%	133,9	2435,79	1,21	210,9	116	220	/
15	648	60%	174	2563,99	1,219	220,2	127	221	/

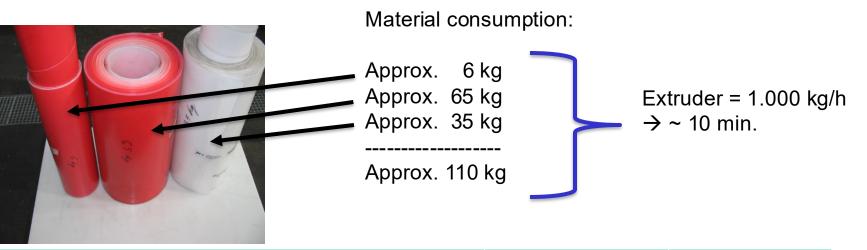
m	np	lp	Рр	Мр	g/n_p	Ер	pvP	pnP	pnMx
[kg/h]	[min ⁻¹]	[%]	[kW]	[Nm]	[kg/h/min ⁻¹]	[Wh/kg]	[bar]	[bar]	[bar]
163	10	19%	0,621	593,035	16,3	3,81	30	51	/
322	20	27%	1,765	842,734	16,1	5,481	30	71	/
635	40	35%	4,576	1092,43	15,88	7,206	30	92	/
790	50	37%	6,047	1154,86	15,8	7,654	30	98	/

Melt Pump:

Extruder	D	179	IN INS ne	n 400	1	ns _{max}	700			365	^
Pump	► nenn	18,5	kW np _{ne}	n 56,6	min	np _{max}	56,6	min ' I _r	max	35,1	A

VBNr.	24/24	24 Customer			Product	Leistungste	est	Raw Material	PP		
Date	27.06.2024	Line	KHS70-33D-	GA4-900		Supplier	Borealis		Grade	HC205T	F
Feeding	smooth			Extruder	K70-33D)	Screw	EMF	S 17	Pump	Maag Extrex 70 HV

Extruder:


TE	ns	ls	Ps	Ms	g/n_s	Es	pvS	Tm	Tm _{man}
[°C]	[min ⁻¹]	[%]	[kW]	[Nm]	[kg/h/min ⁻¹]	[Wh/kg]	[bar]	[°C]	[°C]
20	80,0	41 %	11,71	1398,29	1,22	120	50	-	
20	182,0	51 %	33,15	1739,34	1,07	170,2	61	-	
20	318,0	63 %	71,55	2148,59	1,214	185,3	75	-	
20	571,0	75 %	152,9	2557,85	1,341	199,8	99	-	
20	702,0	77 %	193,1	2626,06	1,345	204,5	98	-	
20	835,0	79 %	235,6	2694,27	1,356	208,1	101	-	

Melt Pump:

m	np	lp	Рр	Мр	g/n_p	Ер	pvP	pnP	pnMx
[kg/h]	[min ⁻¹]	[%]	[kW]	[Nm]	[kg/h/min ⁻¹]	[Wh/kg]	[bar]	[bar]	[bar]
97,6	10	16 %	0,012	11,6095	9,76	0,125	30	37	
194,8	20	27 %	0,041	19,5911	9,74	0,211	30	56	
386,2	40	40 %	0,122	29,0238	9,66	0,315	30	87	
765,6	80	54 %	0,328	39,1822	9,57	0,429	40	116	
944,0	100	57 %	0,433	41,359	9,44	0,459	40	119	
1132	120	59 %	0,538	42,8102	9,43	0,475	40	122	

Extruder	D	250	kW	ns _{nenn}	700	1	ns _{max}	1000	1		475	^
Pump	r _{nenn}	19,3	ĸvv	np _{nenn}	2540	min '	np _{max}	3000	min '	max	39	A

Color Changing Process

	KHS 70 Extruder	K 150 Extruder
Volume inside the extruder [kg]	~ 4	~ 35
Material requirement for colour change [kg]*	~ 150	~ 1100
Colour change time with low throughput [min]	~ 30	~ 50
Colour change time with high throughput [min]	~ 10	~ 35

In-Line-Extrusion today

© Kuhne Group – proprietary information all rights reserved

Control Unit

"KEC" Control Unit | Retrofit PLC

- Transition from HMI to MHI ongoing
- Hardware Controled in addition to Software controled
- Touch Screen Pannel
- Flow Chart Displaying
- Overview & Component Set-Up F&D
- Data Analysis
- Self explaining graphics

Thank you for your attention!

Kuhne North America Corp.

1251 N. Eddy St.

Suite 200.

South Bend, IN 46617

TEL: + 1 (574) 931 0251

Mail: dahl@kuhne-group.com

FIND YOUR PERSONAL CONTACT @:

www.kuhne-group.com

In-Line-Extrusion today

© Kuhne Group – proprietary information all rights reserved