Nitrous-Hydro Flame Treatment Technology and its applications

StefanoMancinelli

esseCI srl Sales & Process Manager

STANDARD FLAME CHEMISTRY AND OXIDATION MECHANISM.

COMPARISON WITH CORONA TREATMENT

Standard Flame Treatment

CORONA TREATMENT SURFACE OXIDATION

oxygen level vs Power

NITROUS-HYDRO (NH-FT) FLAME TREATMENT

Nitrous-Hydro (NH-FT) Flame Treatment

NITROUS-HYDRO FLAME

1) Nitrous Oxide

Usage:

- Anesthetic (non-toxic on organ and tissues; TLV-TWA ACGIH:50ppm);
- Food Industry;
- Refrigerant Fluid;
- WVII (Luftwaffe GM-1);
- NOs: Intercooler effect; higher combustion air density, higher amount of combustible that can be burned.

Thermal scission at 565 $^\circ\,$ C to produce nitrogen and oxygen +HEAT:

$2 \text{ N}_2\text{O}(g) \rightarrow 2 \text{ N}_2(g) + \text{O}_2(g) + \text{heat}$

 $\begin{array}{l} {\sf CH}_4 \,+\, 4{\sf N}_2{\sf O}{\rightarrow} 4{\sf N}_2{+}2{\sf H}_2{\sf O}{+}{\sf CO}_2 \\ {\sf C}_3{\sf H}_8 \,+\, 10{\sf N}_2{\sf O}{\rightarrow} 10{\sf N}_2{+}4{\sf H}_2{\sf O}{+}3{\sf CO}_2 \end{array}$

2) Methane-Hydrogen Mixtures (MHM)

Usage:

Combustible in transportation

 $\begin{array}{l} {\sf CH4} + 202 {\rightarrow} \ 2 \ {\sf H2O}(g) + {\sf CO}_2(g) + heat \\ {\sf 2H2} + 02 {\rightarrow} \ 2 \ {\sf H2O}(g) + {\sf CO}_2(g) + heat \end{array}$

Functionalities added on web surface

- <u>Oxidized Nitrogen</u>: NO₃, NO₂ (organic nitrates and/or nitrites);
- Reduced Nitrogen: R₁-NH₂; N-C=O; CNR; R-CN (amine, imine, amide, nitrile)

Flame vs. Corona/Plasma

N₂O vs NH₃ Temperature factor

APPLICATIONS

Patent Number 102022000002636 - Italy Application Number 18/837,790 - USA

NH-FT Treated Film Types

- Bioriented Polypropylene (BO-PP), both homopolymer and coextruded skins (homo-, copo-, terpo-);
- Polypropylene white opaque, solid and cavitated;
- Cast Polypropylene (C-PP);
- Oriented Polyethilene (O-PE);
- Polyester (BO-PET);
- Biobased and Biodegradable films.

Coatings applied

- Liquid Varnishes and inks nitrocellulose/PUR pure PUR nitroacrylic based, in ethyl acetate or ethile acetate/alcohol, as the ones by Sun Chemical, for lamination and surface printing (roto and flexo), as Soliprop TM, Duratort PM, Solvafilm TM, Duratort PF, SOLIMAX P, SOLIPROP V. series;
- **UV inks** for Labels applications, as Siegwerk Nutriflex LM, Zeller Y81 (LM) and Flint Flexocure Force;
- Acrylic lacquers, as DSM NeoCryl FL-715, FL-721, BT-36 (water emulsions), B-871 (in solvent);
- Polyvinylidene Chloride (PvdC) lacquers, as Solvay, Diofan family (A050, A297, B203);
- PVOH/EVOH lacquers, as Kuraray, Exceval (AQ4104), Poval (2598-R) and Michelman Michem Flex B3513, B3530 and ENF0922;
- **PET** and **Oxygen barriers varnishes**, as Sunbar series by Sun Chemical;
- AlOx and Aluminum.

Results (after industrial scale tests)

- Immediate (t = 0) Adhesion of lacquers, inks, varnishes on poly substrates, <u>without</u> the need to use any primer, adhesion promoters or hardener, as:
- a) PUR primer as DSM NeoRez R-600 and NeoRez R-610 for acrylic coatings;
- b) PUR primer as DSM NeoRez R-610 or PUR/PET BASF Epotal for PVDC coatings;
- c) PEI primer as BASF Lupasol WF for PVOH/EVOH coatings;
- d) Ti chelated adh. promoter as NT 9013000165 Sun Chemical for nitro inks.
- t = 0 Adhesion even in overlay printing and coating (two coatings or ink layers put on Nitrous Flame treated surface);
- No need to primerize/coat web surface prior to UV inks application;
- Excellent coating adhesion and sealability (acrylic/acrylic, acrylic/nitro and acrylic/PET), even with BOPP coated homopolymer, <u>after 18 months;</u>
- High metal adhesion on BOPP homopolymer metallized substrates, without any need of a primer layer or a tie-layer (EVOH). Metal surface energy high retention. 18 months after treatment inks adhesion on aluminum, without any adhesion promoter.

Above results cannot be reached by std. Flame, corona or plasma treatment

Nitrocellulose liquid INK adhesion on BOPP

Corona Treated

Standard Flame Treated Nitrous-

ed Nitrous-Hydro Flame Treated

Immediate (t=0h) Adhesion

Adhesion with promoter (t=24h)

1) LINE DATA:

CASE STUDY 1 - ORIENTER

Max web width: 10 m;

Process speed: 450 m/min on 18µm;

Programmed/Actual run time: 8760/8400 h;

Theoretical Film production per year: 2268*10⁶ m2/year;

Theoretical film produced per year: 36,86*10⁶kg/year (A-B-C and B-C)

2) ACTUAL FILM PRODUCED AND PP CONSUMPTION:

- 31,2*10⁶kg/year A-B-C;
- 31,9*10⁶kg/year B-C;
- DT = 8% on A-B-C and 7% on B-C;

RECLAIM = 1,8*10⁶kg/year A-B-C; 2,2*10⁶kg/year B-C; PP CONSUMPTIONS:

- 35,0*10⁶kg/year A-B-C;
- 34,6*10⁶kg/year B-C;

3) PRODUCTION COSTS:

(materials, menwork, utilities, general costs): Total:

- A-B-C + Std. Flame: 78*10⁶ €/year;
- B-C + NH-FT Flame: 64,8*10⁶ €/year.

CASE STUDY 2 – PRINTING PRESS

1) LINE DATA:

Lamination printing 70%, Surface printing 30%; Average web width: 1,2 m; Process speed: 260 m/min; Actual run time per year: 264 days/6336 h; Average print run: 40,000 m; Number of colors: 8-color press; Uptime: 0,50.

2) INKS and CATALYST:

- White Ink: 45%; 2,5g/m2;
- Color Inks: 30%; 1,2g/m2;
- Catalyst (Aromatic Isocyanate): 44%; 7,50% w/w;
- Ink tray capacity in each color station: 70kg;
- Ink tray renewal frequency:
 - o 1/day white ink;
 - o 2/day color inks.
- Number of color station added with catalyst: 2-5.

3) <u>NET SAVINGS</u>:

620,000 - 1,400,000 €/year

CASE STUDY 3 – COATING (2 sides coating)

1) LINE DATA:

Average web width: 2,8m; Web thickness: 18μm; Process speed: 400m/min; Scheduled run time per year: 8064h; Uptime/Slitting Yield: 0.88/0.88;

2) LACQUERS AND PRIMERS:

- A = Acrylic coating grammage: 0.8g/m2;
- Primers: PUR 0.12g/m2; PEI 0.04g/m2
- Coated film (2 sides) grammage: 17.9g/m2
- Production per year after slitting: 7×10^{6} kg .

3) <u>NET SAVINGS</u>: C2-C3-C4 w primer vs. C3 w/o primer 0,54 €/kg

NH-FT BENEFITS

Process easiness and flexibility:

- a) Immediate inks adhesion, no need to wait cross-linking up to 24h;
- b) Extended ink pot-life, thanks to no cross-linker presence;
- c) Possibility to use one ink for different substrates (as PP, PE, PET).
- Huge savings, thanks to catalyst/primers/adhesion promoters and their issues elimination;
- Removal of eco-toxicological risk coming from adhesion promoters and primers;
- No issues for adhesion in high humidity conditions, as happens when using adhesion promoters and primers;
- Great step forward towards recyclability and mono-materials.

NH-FT Flame Treatment Systems

DOUBLE SIDE TREATMENT STATION

SINGLE SIDE TREATMENT STATION

THANK YOU FOR YOUR ATTENTION!

Stefano Mancinelli Ph:+39.348.4912586 Mail: <u>s.mancinelli@essecinet.net</u> Iinkedin.com/in/stefano-mancinelli-5795136

